Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.616
Filtrar
1.
Commun Biol ; 7(1): 467, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632473

RESUMO

Differences in shape can be a distinguishing feature between different cell types, but the shape of a cell can also be dynamic. Changes in cell shape are critical when cancer cells escape from the primary tumor and undergo major morphological changes that allow them to squeeze between endothelial cells, enter the vasculature, and metastasize to other areas of the body. A shift from rounded to spindly cellular geometry is a consequence of epithelial-mesenchymal plasticity, which is also associated with changes in gene expression, increased invasiveness, and therapeutic resistance. However, the consequences and functional impacts of cell shape changes and the mechanisms through which they occur are still poorly understood. Here, we demonstrate that altering the morphology of a cell produces a remodeling of calcium influx via the ion channel PIEZO1 and identify PIEZO1 as an inducer of features of epithelial-to-mesenchymal plasticity. Combining automated epifluorescence microscopy and a genetically encoded calcium indicator, we demonstrate that activation of the PIEZO1 force channel with the PIEZO1 agonist, YODA 1, induces features of epithelial-to-mesenchymal plasticity in breast cancer cells. These findings suggest that PIEZO1 is a critical point of convergence between shape-induced changes in cellular signaling and epithelial-mesenchymal plasticity in breast cancer cells.


Assuntos
Neoplasias da Mama , Células Endoteliais , Humanos , Feminino , Células Endoteliais/metabolismo , Cálcio/metabolismo , Neoplasias da Mama/metabolismo , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo
2.
BMC Oral Health ; 24(1): 465, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627713

RESUMO

BACKGROUND: Mechanosensitive ion channel PIEZOs have been widely reported to involve inflammation and pain. This study aimed to clarify expression patterns of PIEZOs and their potential relations to irreversible pulpitis. MATERIALS AND METHODS: Normal pulp tissues (n = 29) from patients with impacted third molars and inflamed pulp tissues (n = 23) from patients with irreversible pulpitis were collected. Pain levels were assessed using a numerical rating scale. PIEZO expressions were measured using real-time PCR and then confirmed using GEO datasets GSE77459, immunoblot, and immunohistochemistry staining. Correlations of PIEZO mRNA expression with inflammatory markers, pain markers, or clinical pain levels were evaluated using Spearman's correlation analysis. Univariate analysis was conducted to analyze PIEZO expressions based on pain description and clinical examinations of cold test, percussion, palpation, and bite test. RESULTS: Compared with normal pulp tissues, mRNA expression levels of PIEZO1 were significantly increased in inflamed pulp tissues, while PIEZO2 was significantly decreased, which was further confirmed in GSE77459 and on a protein and histological level. The positive correlation of the mRNA expression levels between PIEZO1 and inflammatory markers, as well as between PIEZO2 and pain markers, was verified. PIEZO2 expression was also positively correlated with pain levels. Besides, irreversible pulpitis patients who reported continuous pain and who detected a positive response to cold stimulus exhibited a higher expression level of PIEZO2 in the inflamed pulp tissues. By contrast, patients reporting pain duration of more than one week showed a higher expression level of PIEZO1. CONCLUSIONS: This study demonstrated the upregulation of PIEZO1 and the downregulation of PIEZO2 in irreversible pulpitis and revealed the potential relation of PIEZO1 and PIEZO2 to inflammation and pain. These findings suggested that PIEZOs might play critical roles in the progression of irreversible pulpitis and paved the way for further investigations aimed at novel therapies of irreversible pulpitis by targeting PIEZOs.


Assuntos
Pulpite , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Inflamação , Dor , RNA Mensageiro
3.
J Transl Med ; 22(1): 332, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575957

RESUMO

INTRODUCTION: Intestinal barrier dysfunction is a pivotal factor in sepsis progression. The mechanosensitive ion channel Piezo1 is associated with barrier function; however, its role in sepsis-induced intestinal barrier dysfunction remains poorly understood. METHODS: The application of cecal ligation and puncture (CLP) modeling was performed on both mice of the wild-type (WT) variety and those with Villin-Piezo1flox/flox genetic makeup to assess the barrier function using in vivo FITC-dextran permeability measurements and immunofluorescence microscopy analysis of tight junctions (TJs) and apoptosis levels. In vitro, Caco-2 monolayers were subjected to TNF-α incubation. Moreover, to modulate Piezo1 activation, GsMTx4 was applied to inhibit Piezo1 activation. The barrier function, intracellular calcium levels, and mitochondrial function were monitored using calcium imaging and immunofluorescence techniques. RESULTS: In the intestinal tissues of CLP-induced septic mice, Piezo1 protein levels were notably elevated compared with those in normal mice. Piezo1 has been implicated in the sepsis-mediated disruption of TJs, apoptosis of intestinal epithelial cells, elevated intestinal mucosal permeability, and systemic inflammation in WT mice, whereas these effects were absent in Villin-Piezo1flox/flox CLP mice. In Caco-2 cells, TNF-α prompted calcium influx, an effect reversed by GsMTx4 treatment. Elevated calcium concentrations are correlated with increased accumulation of reactive oxygen species, diminished mitochondrial membrane potential, and TJ disruption. CONCLUSIONS: Thus, Piezo1 is a potential contributor to sepsis-induced intestinal barrier dysfunction, influencing apoptosis and TJ modification through calcium influx-mediated mitochondrial dysfunction.


Assuntos
Mucosa Intestinal , Sepse , Humanos , Camundongos , Animais , Células CACO-2 , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Cálcio/metabolismo , Sepse/complicações , Canais Iônicos/metabolismo , Canais Iônicos/farmacologia
4.
Methods Mol Biol ; 2801: 29-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578411

RESUMO

Connexins are polytopic domain membrane proteins that form hexameric hemichannels (HCs) which can assemble into gap junction channels (GJCs) at the interface of two neighboring cells. The HCs may be involved in ion and small-molecule transport across the cellular plasma membrane in response to various stimuli. Despite their importance, relatively few structures of connexin HCs are available to date, compared to the structures of the GJCs. Here, we describe a protocol for expression, purification, and nanodisc reconstitution of connexin-43 (Cx43) HCs, which we have recently structurally characterized using cryo-EM analysis. Application of similar protocols to other connexin family members will lead to breakthroughs in the understanding of the structure and function of connexin HCs.


Assuntos
Conexina 43 , Conexinas , Conexina 43/metabolismo , Microscopia Crioeletrônica , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo
5.
Methods Mol Biol ; 2801: 57-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578413

RESUMO

The 21-member connexin family found in humans is the building block of both single-membrane spanning channels (hemichannels) and double-membrane spanning intercellular channels. These large-pore channels are dynamic and typically have a short life span of only a few hours. Imaging connexins from the time of synthesis in the endoplasmic reticulum through to their degradation can be challenging given their distinct assembly states and transient residences in many subcellular compartments. Here, we describe how connexins can be effectively imaged on a confocal microscope in living cells when tagged with fluorescent proteins and when immunolabeled with high affinity anti-connexin antibodies in fixed cells. Temporal and spatial localization of multiple connexins and disease-linked connexin mutants at the subcellular level extensively informs on the mechanisms governing connexin regulation in health and disease.


Assuntos
Conexinas , Junções Comunicantes , Humanos , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Transporte Biológico , Microscopia Confocal
6.
Methods Mol Biol ; 2801: 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578409

RESUMO

Connexins are the proteins that form the gap junction channels that are essential for cell-to-cell communication. These channels are formed by head-to-head docking of hemichannels (each from one of two adjacent cells). Free "undocked" hemichannels at the plasma membrane are mostly closed, although they are still important under physiological conditions. However, abnormal and sustained increase in hemichannel activity due to connexin mutations or acquired conditions can produce or contribute to cell damage. For example, mutations of Cx26, a connexin isoform, can increase hemichannel activity and cause deafness. Studies using purified isolated systems under well-controlled conditions are essential for a full understanding of molecular mechanisms of hemichannel function under normal conditions and in disease, and here, we present methodology for the expression, purification, and functional analysis of hemichannels formed by Cx26.


Assuntos
Conexinas , Junções Comunicantes , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Fenômenos Biofísicos
7.
Methods Mol Biol ; 2801: 135-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578419

RESUMO

Gap junctions, pivotal intercellular conduits, serve as communication channels between adjacent cells, playing a critical role in modulating membrane potential distribution across cellular networks. The family of Pannexin (Panx) proteins, in particular Pannexin1 (Panx1), are widely expressed in vertebrate cells and exhibit sequence homology with innexins, the invertebrate gap junction channel constituents. Despite being ubiquitously expressed, detailed functional and pharmacological properties of Panx1 intercellular cell-cell channels require further investigation. In this chapter, we introduce optimized cell culture methodologies and electrophysiology protocols to expedite the exploration of endogenous Panx1 cell-cell channels in TC620 cells, a human oligodendroglioma cell line that naturally expresses Panx1. We anticipate these refined protocols will significantly contribute to future characterizations of Panx1-based intercellular cell-cell channels across diverse cell types and offer valuable insights into both normal cellular physiology and pathophysiology.


Assuntos
Conexinas , Junções Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Linhagem Celular , Canais Iônicos/metabolismo , Potenciais da Membrana
8.
Viruses ; 16(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543711

RESUMO

Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.


Assuntos
Proteínas Viroporinas , Vírus , Proteínas Viroporinas/metabolismo , Proteínas Virais/metabolismo , Canais Iônicos/metabolismo , Imunidade Inata
9.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533727

RESUMO

Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.


Assuntos
Conexina 43 , Conexinas , Animais , Conexinas/genética , Conexinas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Queratinócitos/metabolismo , Comunicação Celular/fisiologia , Mamíferos/metabolismo
10.
Cells ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534326

RESUMO

Mechanosensation is a fundamental function through which cells sense mechanical stimuli by initiating intracellular ion currents. Ion channels play a pivotal role in this process by orchestrating a cascade of events leading to the activation of downstream signaling pathways in response to particular stimuli. Piezo1 is a cation channel that reacts with Ca2+ influx in response to pressure sensation evoked by tension on the cell lipid membrane, originating from cell-cell, cell-matrix, or hydrostatic pressure forces, such as laminar flow and shear stress. The application of such forces takes place in normal physiological processes of the cell, but also in the context of different diseases, where microenvironment stiffness or excessive/irregular hydrostatic pressure dysregulates the normal expression and/or activation of Piezo1. Since Piezo1 is expressed in several blood cell lineages and mutations of the channel have been associated with blood cell disorders, studies have focused on its role in the development and function of blood cells. Here, we review the function of Piezo1 in different blood cell lineages and related diseases, with a focus on megakaryocytes and platelets.


Assuntos
Canais Iônicos , Transdução de Sinais , Linhagem da Célula , Canais Iônicos/metabolismo , Transporte de Íons , Membrana Celular/metabolismo
11.
Channels (Austin) ; 18(1): 2335467, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38546173

RESUMO

The mitochondrion, one of the important cellular organelles, has the major function of generating adenosine triphosphate and plays an important role in maintaining cellular homeostasis, governing signal transduction, regulating membrane potential, controlling programmed cell death and modulating cell proliferation. The dynamic balance of mitochondrial volume is an important factor required for maintaining the structural integrity of the organelle and exerting corresponding functions. Changes in the mitochondrial volume are closely reflected in a series of biological functions and pathological changes. The mitochondrial volume is controlled by the osmotic balance between the cytoplasm and the mitochondrial matrix. Thus, any disruption in the influx of the main ion, potassium, into the cells can disturb the osmotic balance between the cytoplasm and the matrix, leading to water movement between these compartments and subsequent alterations in mitochondrial volume. Recent studies have shown that mitochondrial volume homeostasis is closely implicated in a variety of diseases. In this review, we provide an overview of the main influencing factors and research progress in the field of mitochondrial volume homeostasis.


Assuntos
Canais Iônicos , Dinâmica Mitocondrial , Tamanho Mitocondrial , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais
12.
Biomolecules ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540723

RESUMO

Mitochondria are most likely descendants of strictly aerobic prokaryotes from the class Alphaproteobacteria. The mitochondrial matrix is surrounded by two membranes according to its relationship with Gram-negative bacteria. Similar to the bacterial outer membrane, the mitochondrial outer membrane acts as a molecular sieve because it also contains diffusion pores. However, it is more actively involved in mitochondrial metabolism because it plays a functional role, whereas the bacterial outer membrane has only passive sieving properties. Mitochondrial porins, also known as eukaryotic porins or voltage-dependent anion-selective channels (VDACs) control the permeability properties of the mitochondrial outer membrane. They contrast with most bacterial porins because they are voltage-dependent. They switch at relatively small transmembrane potentials of 20 to 30 mV in closed states that exhibit different permeability properties than the open state. Whereas the open state is preferentially permeable to anionic metabolites of mitochondrial metabolism, the closed states prefer cationic solutes, in particular, calcium ions. Mitochondrial porins are encoded in the nucleus, synthesized at cytoplasmatic ribosomes, and post-translationally imported through special transport systems into mitochondria. Nineteen beta strands form the beta-barrel cylinders of mitochondrial and related porins. The pores contain in addition an α-helical structure at the N-terminal end of the protein that serves as a gate for the voltage-dependence. Similarly, they bind peripheral proteins that are involved in mitochondrial function and compartment formation. This means that mitochondrial porins are localized in a strategic position to control mitochondrial metabolism. The special features of the role of mitochondrial porins in apoptosis and cancer will also be discussed in this article.


Assuntos
Canais Iônicos , Canais de Ânion Dependentes de Voltagem , Canais Iônicos/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Porinas/análise , Porinas/química , Porinas/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Potenciais da Membrana
13.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542338

RESUMO

Claudins are one of the major components of tight junctions (TJs) that polymerize within the cell membrane and form interactions between cells. Some claudins seal the paracellular space, limiting paracellular flux, while others form selectively permeable ion channels that control the paracellular permeability of small ions. Claudin strands are known to be dynamic and reshape within TJs to accommodate large-scale movements and rearrangements of epithelial tissues. Here, we summarize the recent computational and modeling studies on claudin assembly into tetrameric ion channels and their polymerization into µm long strands within the membrane. Computational studies ranging from all-atom molecular dynamics, coarse-grained simulations, and hybrid-resolution simulations elucidate the molecular nature of claudin assembly and function and provide a framework that describes the lateral flexibility of claudin strands.


Assuntos
Claudinas , Junções Íntimas , Claudinas/metabolismo , Junções Íntimas/metabolismo , Canais Iônicos/metabolismo , Simulação de Dinâmica Molecular , Epitélio/metabolismo , Claudina-3/metabolismo
14.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475827

RESUMO

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Assuntos
Aciltransferases , Hiperalgesia , Canais Iônicos , Tato , Animais , Feminino , Masculino , Camundongos , Hiperalgesia/patologia , Canais Iônicos/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Dor , Primatas , Tato/fisiologia , Aciltransferases/metabolismo
15.
Methods Mol Biol ; 2778: 221-236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478281

RESUMO

Total interference reflection fluorescence (TIRF) microscopy of lipid bilayers is an effective technique for studying the lateral movement and ion channel activity of single integral membrane proteins. Here we describe how to integrate the mitochondrial outer membrane preprotein translocase TOM-CC and its ß-barrel protein-conducting channel Tom40 into supported lipid bilayers to identify possible relationships between movement and channel activity. We propose that our approach can be readily applied to membrane protein channels where transient tethering to either membrane-proximal or intramembrane structures is accompanied by a change in channel permeation.


Assuntos
Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Canais Iônicos/metabolismo
16.
Sci Rep ; 14(1): 6031, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472404

RESUMO

The dysfunction of ion channels is a causative factor in a variety of neurological diseases, thereby defining the implicated channels as key drug targets. The detection of functional changes in multiple specific ionic currents currently presents a challenge, particularly when the neurological causes are either a priori unknown, or are unexpected. Traditional patch clamp electrophysiology is a powerful tool in this regard but is low throughput. Here, we introduce a single-shot method for detecting alterations amongst a range of ion channel types from subtle changes in membrane voltage in response to a short chaotically driven current clamp protocol. We used data assimilation to estimate the parameters of individual ion channels and from these we reconstructed ionic currents which exhibit significantly lower error than the parameter estimates. Such reconstructed currents thereby become sensitive predictors of functional alterations in biological ion channels. The technique correctly predicted which ionic current was altered, and by approximately how much, following pharmacological blockade of BK, SK, A-type K+ and HCN channels in hippocampal CA1 neurons. We anticipate this assay technique could aid in the detection of functional changes in specific ionic currents during drug screening, as well as in research targeting ion channel dysfunction.


Assuntos
Canais Iônicos , Neurônios , Eletrofisiologia , Canais Iônicos/metabolismo , Neurônios/metabolismo , Membrana Celular/metabolismo , Transporte de Íons
17.
Protein Sci ; 33(4): e4965, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501596

RESUMO

The mechanosensitive channel of large conductance (MscL) acts as an "emergency release valve" that protects bacterial cells from acute hypoosmotic stress, and it serves as a paradigm for studying the mechanism underlying the transduction of mechanical forces. MscL gating is proposed to initiate with an expansion without opening, followed by subsequent pore opening via a number of intermediate substates, and ends in a full opening. However, the details of gating process are still largely unknown. Using in vivo viability assay, single channel patch clamp recording, cysteine cross-linking, and tryptophan fluorescence quenching approach, we identified and characterized MscL mutants with different occupancies of constriction region in the pore domain. The results demonstrated the shifts of constriction point along the gating pathway towards cytoplasic side from residue G26, though G22, to L19 upon gating, indicating the closed-expanded transitions coupling of the expansion of tightly packed hydrophobic constriction region to conduct the initial ion permeation in response to the membrane tension. Furthermore, these transitions were regulated by the hydrophobic and lipidic interaction with the constricting "hot spots". Our data reveal a new resolution of the transitions from the closed to the opening substate of MscL, providing insights into the gating mechanisms of MscL.


Assuntos
Proteínas de Escherichia coli , Canais Iônicos , Canais Iônicos/genética , Canais Iônicos/química , Canais Iônicos/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas de Escherichia coli/química , Constrição
18.
Cell Mol Life Sci ; 81(1): 140, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485771

RESUMO

The importance of mechanosensory transduction pathways in cellular signalling has prominently come to focus in the last decade with the discovery of the Piezo ion channel family. Mechanosignaling involving Piezo1 ion channels in the function of the heart and cardiovascular system has only recently been identified to have implications for cardiovascular physiology and pathophysiology, in particular for heart failure (i.e., hypertrophy or dilative cardiomyopathy). These results have emphasized the need for higher throughput methods to study single-cell cardiovascular mechanobiology with the aim of identifying new targets for therapeutic interventions and stimulating the development of new pharmacological agents. Here, we present a novel method to assess mechanosignaling in adherent cardiac cells (murine HL-1 cell line) using a combination of isotropic cell stretch application and simultaneous Ca2+ fluorescence readout with quantitative analysis. The procedure implements our IsoStretcher technology in conjunction with a single-cell- and population-based analysis of Ca2+ signalling by means of automated image registration, cell segmentation and analysis, followed by automated classification of single-cell responses. The method is particularly valuable for assessing the heterogeneity of populations with distinct cellular responses to mechanical stimulation and provides more user-independent unbiased drug response classifications.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Camundongos , Animais , Canais Iônicos/metabolismo , Transdução de Sinais , Coração , Linhagem Celular
19.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426496

RESUMO

Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.


Assuntos
Túbulos Renais Coletores , Masculino , Camundongos , Animais , Túbulos Renais Coletores/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cálcio/metabolismo , Néfrons/metabolismo , Rim/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
20.
Methods Mol Biol ; 2761: 529-557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427260

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.


Assuntos
Doença de Parkinson , Humanos , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Canais Iônicos/metabolismo , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...